NOTATION

t, time, T; and Ty, temperature in the regions z > 0 and z < 0, respectively; a,, a5, Ay, and A, ther-
mal diffusivity and thermal conductivity in the corresponding regions; X and Z, coordinates; €j, £y, Joule—
Thomson coefficients in the corresponding regions; P; and P,, pressure distributions; R, characteristic

length,

co

I;x>0;’f() 2 Y_zgd
I(x)= erfe(x) = ——\¢ 2.
) {0;x<0; V"x
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APPLICATION OF INTEGRAL-RELATION METHOD
IN USING COMPLEX MODELS OF TURBULENCE

T. A. Girshovich UDC 532.517.4

The generalization of the integral-relation method to the case when turbulence models with two
differential equations for the turbulent flow properties is considered.

Recently, in achieving closure of the system of equations of turbulent liquid motion, there has been wide
use of semiempirical theories of turbulence with one or more differential equations for the transfer of any
turbulent flow properties [1-5]. Usually, the system of partial differential equations is numerically integrated,
which requires considerable machine time.

In jet theory, at present, integral methods of solution are widely used [6]. One such is the integral-rela-
tion method, in which, rather than the initial system of partial differential equations, the solution for some in-
tegral relations obtained on the basis of this system is obtained. Solution by the integral-relation method rests
on the similarity between the velocity, temperature, and concentration profiles in the jet, and reduces to inte-
gration of a system of ordinary differential equations. In a number of jet problems, the use of this method
leads to very simple and clear relations.

Usually, integral relations are obtained on the basis of equations of motion, heat transfer, and impuri-
ties. The system of integral relations is then closed by the Prandtl formula (or another algebraic formula) for
the tangential stress and its analogs for the heat transfer and impurities.

It is also expedient to use the integral~-relation method when more complex models of turbulence — with
one or more differential equations for any turbulent properties of the liquid —are used. Note that the literature
includes a number of papers which use one integral relation obtained from the differential equation for the
kinetic energy of turbulent pulsations. In these works, either the system of partial differential equations of
motion and continuity is solved with this relation or this integral relation is solved for a single parameter and
the other unknowns are determined from experiment {5, 7, 8].

Since more complex turbulence models contain new unknowns, it is necessary, accordingly, to generalize
the integral~relation method so as to obtain new unknowns using integral relations derived on the basis of ad-
ditional differential equations.
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An example of such generalization will now be considered for the case of the motion of a turbulent jet of
incompressible liquid (plane or circular) issuing from an infinitesimally thin slif or from a point source into
a companion turbulent jet, using a model of turbulence with two equations — the equation for the kinetic energy
e of the turbulent pulsations and the equation for the product of the turbulent-pulsation kinetic energy and the
turbulence scale, eL (the Rodi—Spalding model). The Kolmogorov—"Prandtl algebraic formula is used for the
turbulent viscosity. In this case, the system of equations takes the form [3, 5]

du du v oyl Buyl oyl
= » :O, (1)
“x TV T e oy ax T ay
de de 1 9 (v,,yf de ) du )2 edi?
= S (MY % 2 Y ¢ , 2)
x 77 o y oy \ o Oy ,+vr( ay ) TTL
deL del 1 8 v del du \2
Lo 9y Cav, L{ 25 ) —Ced/2, 3)
" ox T dy yl oy ( o Oy )+ o (ay) ’ (
C e=w, 2y =c VL “@
dy

Here u and v are longitudinal and transverse components of the mean velocity; e = ({ul'?) + {v1?) + {w!'®))/2,
kinetic energy of the turbulent puisations; L, macroscale; vT, turbulent viscosity; r, tangential stress; p,
density; u', v', w', components of the pulsational velocity; Cy, oe, CDs 0eLs CB, 2nd Cs, empirical constants
determined in [3] by comparing the results of experiment and numerical calculation for self-similar jet flow:
x, coordinate directed along the jet axis; y, a coordinate perpendicular to x; j = 0 corresponds to a plane jet

- and j = 1 to an axisymmetric jet.

The boundary conditions are as follows
du

U= Uy =0 when y = §,
By
Je del ‘
e =g, el = (el);, = o =0 when y— §,,
s (el)s 3 % 5)
ou de deL
== Uy, €5= 8y, U=0, s i =0 wheny:(},
" g ay ay ay

In writing Egs. (1)=~(4) and the boundary conditions in Eq, (5), it has been assumed that the boundaries of
the jet with respect to turbulent pulsations and velocity differ and that the microscale is proportional to the
macroscale,

The change in kinetic energy of the external flux and its turbulence scale may be determined using Egs.
(2) and (3), which, in view of the lack of transverse gradients of u and e, take the form
de e3/2 d (el),
u - C . u — g 312 6)
S e D L, S v Cses'”. (
- To obtain a system of integral relations on the basis of the kinetic-energy equation for the turbulent pul-
sations, this equation is written, using the continuity equation, in the form
Ayiu (e — e)* T Oylv(e—e)t kle—e)h—1 | yiu d{e—ey) .
o0x dy ox

0 0= 1 _pio— oot [ iy o
+ yiv 3 j e— &) yu — +
d vyl e ; ( ou )2-—-—6 e3/2 i]
A ( o, ay)”"* )T

and is then integrated with respect to y from 0 to 6,. After several transformations, the following result is
obtained

On

Be
! kk— 1) ! de \? .
13 R kd it e, v —— k—2 d
™ fyu(e es)* dy — jvr( o ) (e—ey)*" yldy +
) 0
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To obtain a system of integral relations on the basis of the equation for eL, this equation is written, us-
ing the continuity equation, in the form
d(eL— eyLg)tuyl | 0(eL — é.Ly)* vyl
dx N dy

. ' 2
X [ 0 yi Ve _?f& + CBVTL( a_“) yi— Cse3/2gi — u M yi :i
dy dx

= k{eL — L)1 X

‘é; Cer. Oy
and is then integrated with respect to y from 0 to .. Afterseveral transformations, the following result is
obtained

8, 8,
d . Rk — 2
— j(eL—eﬁLa)k wyidy= —EE =D X vy ( geL ) (eL — e, L)~ yidy +
* 3 Cer § dy
&

8,

e . 5
+ kCp j. (L’L-“ eGLé)k"lVTL (—g—lﬁ )-. yidy— kCg 533/2 (el — gﬁLé)k*-l yidy. — k —q%:—f-k j‘ ufel ~—eﬁL6)"“‘ yidy. (8)
Y
0 . 0

€

0

To solve the problem using the integral relations in Egs. (7) and (8), it is necessary to specify not only
the velocity profile, but also the form of the kinetic-energy profile for the turbulent pulsations and the profile
of eL. These profiles are written in the form of polynomials
_— 9)

LT = A+ Ao+ A2+ Ami - Aw, (
e 2 .
eL - ebLG

= By + Bme + B + B + Bin} (n, = y/b,), (10)
emLm - eﬁLb .

the coefficients of which are found using bourdary conditions for e and el from Eq. (5). After several trans-
formations, the following result is obtained

e—eg

= 1 302 208 A2 (1 — 02 = 4 (), (11)
Em €y
Ll _y3npt on + Ban (1—n ) =fa(no) (12)

emLm e BGLG

Here the coefficients Ay and By, generally speaking, are unknown functions of the distance to the nozzle cross
section.

If the profiles of e and eL are specified in the form in Eqs. (9) and (10), five unknowns must be deter-
mined to solve the problem (assuming that uy, and § are found from integral relations obtained on the basis
of the equation of motion [6]): Ay, 8g, €y, (€L)y, and By, These unknowns may be determined from the three
integral relations in Eq. (7) with k = 1, 2, 3 and two from Eq. (8) with k = 1, 2,

The parameter 1, which appears in Eds. (7) and (8) not in the complex eL but on its own, may be de~
termined using el. and e as follows

L=celje

or

L == esLs -+ (emlm—esly) [2 (o) . (13)
ey -+ (em—e5) f1 ()
1f the scale of the external turbulence is very large, or the degree of turbulence of the external flux is
small, es and Lg may be regarded as constant. Then, as well as the equations for u,, and 6, if is sufficient
to determine the jet characteristics using only one differential equation for e, and the assumption that the
turbulence scale is proportional to the jet width with respect to turbulent pulsations §g. The three unknowns
Sgs €y, and Ay may be found from Eq. (7) for k = 1, 2, 8, in which case it takes the simpler form
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When the integral-relation model is used, the constants C,uv oes Cps 0eLs CB, and Cg of the Rodi—Spalding
model may differ somewhat in numerical value from the results of [3].

NOTATION

e and L, kinetic energy and turbulence scale; u, v, longitudinal and transverse components of the mean

velocity; u', v', w', pulsational-velocity components; x, y, coordinates directed along the jet axis and perpen~
dicular to it; 8§, ¢, jet boundaries with respect to velocity and turbulent pulsations, respectively; v T, turbu~
lent viscosity; Cy,0es Cps CB, Cgs and gey, empirical constants; p, liquid density; T, tangential stress. In~
dices: 3, jet boundary; m, jet axis,
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