
N O T A T I O N  

t, t ime,  T 1 and T2, t empera tu re  in the regions z > 0 and z < 0, respec t ive ly ;  a l ,  ag, 11, and ~,~, t h e r -  
mal  diffusivity and t he rma l  conductivity in the corresponding regions;  ~ and ~, coordinates;  ei, eii , J o u l e -  
Thomson coefficients  in the corresponding regions;  P~ and P2, p r e s su re  distr ibutions;  R, charac te r i s t i c  
length, 

I; x > 0; ' 2 i 
l ( x )  = e r i c ( x )  : e-Z~'dz.  

O; x<O;  ~ - ,  X 
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A P P L I C A T I O N  O F  I N T E G R A L - R E L A T I O N  M E T H O D  

IN U S I N G  C O M P L E X  M O D E L S  OF  T U R B U L E N C E  

T.  A.  G i r s h o v i c h  UDC532.517.4 

The general izat ion of the in tegra l - re la t ion  method to the case  when turbulence models  with two 
di f ferent ia l  equations for the turbulent  flow proper t i e s  is considered.  

Recently,  in achieving c losure  of the sys tem of equations of turbulent  liquid motion, t he re  has been wide 
use of s e m ie mp i r i c a l  theor ies  of turbulence with one or more  dif ferent ia l  equations for the t rans fe r  of any 
turbulent  flow proper t i e s  [1-5]. Usually, the sys tem of par t ia l  d i f ferent ia l  equations is numerica l ly  integrated,  
which r equ i r e s  considerable  machine time. 

In jet  theory ,  at p resen t ,  integral  methods of  solution a re  widely used [6]. One such is the i n t eg ra l - r e l a -  
t ion method, in which, r a the r  than the initial sys tem of par t ia l  d i f ferent ia l  equations,  the solution for some in-  
tegra l  re la t ions  obtained on the basis  of this sys tem is obtained. Solution by the in tegra l - re la t ion  method r e s t s  
on the s imi la r i ty  between the velocity,  t empera tu re ,  and concentrat ion profi les  in the jet, and reduces  to inte-  
grat ion of a sys tem of ord inary  dif ferent ia l  equations. In a number of jet  problems,  the use of this method 
leads to v e r y  s imple and c lear  re la t ions.  

Usually, integral  re la t ions  a re  obtained on the basis  of equations of motion, heat  t r ans f e r ,  and impur i -  
t ies.  The sys tem of integral  re la t ions  is then closed by the Prandt l  formula  (or another algebraic  formula) for  
the tangential  s t r e s s  and its analogs for the heat  t r an s f e r  and impuri t ies .  

It is also expedient  to use the in tegra l - re la t ion  method when m o r e  complex models  of tlxrbulence - with 
one or  m o r e  di f ferent ia l  equations for any turbulent  p roper t i es  of the liquid - a r e  used. Note that the l i t e ra ture  
includes a number of papers  which use one integral  re la t ion  obtained f rom the different ia l  equation for the 
kinetic energy of turbulent  pulsations. In these  works ,  e i ther  the system of par t ia l  different ia l  equations of 
motion and continuity is solved with this re la t ion  or  this integral  re la t ion is solved for a single pa rame te r  and 
the other  unknowns a re  de termined f rom exper iment  [5, 7, 8]. 

Since more  complex turbulence models  contain new unknowns, it is necessa ry ,  accordingly,  to general ize  
the in tegra l - re la t ion  method so as to obtain new unknowns using integral  re la t ions der ived on the basis  of ad-  
dit ional d i f ferent ia l  equations. 

Trans la ted  f rom Inzhenerno-Fiz icheski i  Zhurnal,  Vol. 36, No. 3, pp. 5 i7-521,  March, 1979. Original 
a r t i c le  submitted October 11, 1977. 
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An example of  such general izat ion will now be considered for the case  of the motion of a turbulent  je t  of 
incompress ib le  liquid (plane or  c i rcular)  issuing f rom an infinitesimally thin sli t  or  f rom a point source  into 
a companion turbulent  jet ,  using a model  of turbulence with two equations - the equation for the kinetic energy 
e of the turbulent  pulsations and the equation for  the product  of the turbulent-pulsat ion kinetic energy and the 
turbulence scale ,  eL (the Rodi-Spalding model) .  The K o l m o g o r o v - P r a n d t l  a lgebraic  formula is used for the 
turbulent  viscosi ty.  In this case,  the system of equations takes the form [3, 5] 

Ou Ou 1 ~vyi Ougl Ovgi (1) u - -  + v -  = + = 0 ,  
Ox oy y~p o u '  Ox oy 

( ) Ou 2 e3,2 Oe a o nvl  (m 
Ox oy yl oy .~ ov \ ov / L 

OeL 1 0 ( v v OeL ) ( ~ ) 2  Cse3t,, OeL + v . . . .  + Cu%L (3) 
u O---x, Oy yi ay Y! ~eL Og 

Ou 
x = v, -~y , v T = C~, Ve-L. (4) 

H e re  u and v a r e  longitudinal and t r a n s v e r s e  components of the mean  velocity;  e = ( (u  I"2} + ( v  1"2 } + (wI'2})/2, 
kinetic energy of the turbulent  pulsations;  L~ mac rosca l e ;  VT, turbulent  viscosi ty;  ~ tangential  s t r e s s ;  p~ 
densi ty;  ut~ v~ w t, components of the pulsational velocity;  Cg, ~e~ CD, aeL~ CB, and CS, empi r ica l  constants 
de termined  in [3] by comparing the resu l t s  of exper iment  and numer ica l  calculat ion for  se l f - s imi la r  jet  flow: 
x, coordinate d i rec ted  along the jet  axis;  y, a coordinate perpendicular  to x; j = 0 cor responds  to a plane jet  
and j = 1 to an ax i symmet r i c  jet. 

The boundary conditions a re  as follows 

Ou t t = U  6, - -  = 0  w h e n y = 8 ,  
Og 

e = e o, eL = (eL)6, ~ 0 e  -_=- __0eL = 0 when y = Be, {5) 
0y 0g 

U = urn, e = era, v = O, Ou _ 0e _ 0eL == 0 w h e n y  = 0. 
ov ov ov 

In writ ing Eqs. (1)-(4) and the boundary conditions in Eq. (5), it  has been assumed that the boundar ies  of 
the je t  with r e spec t  to turbulent  pulsations and veloci ty  differ  and that the mic rosca l e  is proport ional  to the 
mac rosca l e .  

The change in kinetic energy of the ex te rna l  flux and its turbulence scale  may  be de termined  using Eqs. 
(2) and (3), which, in view of the lack of t r a n s v e r s e  gradients  of u and e, take the form 

e 3 / 2 d (eL)6 u6 de~ = -  Co , u 8 =-- .Cse~l~ (6) 
dx -s dx 

To obtain a sys tem of integral  re la t ions  on the bas is  of the k ine t ic -energy  equation for the turbulent  pul-  
satious~ this equation is wri t ten ,  using the continuity equation, in the form 

-1- :Oyiv (~e~e6)k = k (e~e~) ~-z [- ytu Ogfu. (e --e~) ~ O (e - -  e~) 
Ox Og _ Ox ' 

0 (e - -  es) = k ( e -  es) ~-I - -  gtu ~ + 
+ y~v oy 

O Oe Ou \~ ~ e ~/2 
Oy J-~"l - -  G o - - - ~  yl 

and is then integrated with r e spec t  to y f rom 0 to 6 e. After  s eve ra l  t ransformations~ the following r e su l t  is 
obtained 

i ~ -dx giu (e - -  es) k dR = v r (e - -  e6) k-2 gidy + 
cs~ . \ O y /  

0 0 

fie 5 ~e 

+ k ~f% ( e -  e~,'-' ( -~g ~"-yMg--k de~_.. ..,~ ~ ( e -  e6)'-' e3L ('~ ..... , t ~ . !  (e .-:-e~) ~-t u y ] d y -  kCo y/dy. (7) 
o 0 o 
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To obtain a s y s t e m  of in tegra l  re la t ions  on the bas i s  of the equation for 
ing the continuity equation, in the fo rm 

0 (eL-- %L~)~'uyi 

dx 

X I-fiftY y~ v~ ~L OeL Oy 

eL, this equation is wr i t ten ,  u s -  

0 (eL ~ e~L~) ~ vv~ l~ ( e L - -  e~L~) ~-~ X 
"7" ~--" 

Oy 

+ Ce%L yi ~ Csea/2yi ~ u dx 

and is then integrated with r e s p e c t  to y f rom 0 to 6 e. After  s eve ra l  t r ans fo rma t ions ,  the following r e su l t  is 
obtained 

8e 8 e 

dx (eL--%L6)~ uyidy----- k (k --1) % (eL ~ %Ls)U-~ yidy + 
0 0 

+ kC. ~ ( e L - -  eoL~)k-tv.L (-~y)2 yidy--kCs S e al2 ( e L -  e~L~) k-i yidy ~ k  d(eL)~dx u (eL - e6L~) k-i ytdy. (S) 
, /  

0 0 0 

To solve  the p rob lem using the in tegra l  re la t ions  in Eqs. (7) and (8), it is n e c e s s a r y  to spec i fy  not only 
the ve loc i ty  prof i le ,  but aLso the f o r m  of the k ine t i c -ene rgy  prof i le  for  the turbulent  pulsat ions and the prof i le  
of  eL.  These  p ro f i l e s  a r e  wr i t t en  in the fo rm of polynomials  

= A 4 (9) e ~ e~ Ao + A~I~ + A~l~e + A~'rt~ + (%, 
era = -  % 

eL--  esL~ = Bo + B~TI. + B~I-~" + B3~l~ + B~I 4 01~ = ylS,), 
emLra ~ %L 6 

(10) 

the coeff ic ients  of which a r e  found using boundary  conditions for  e and eL  f r o m  Eq. (5). Af ter  s e v e r a l  t r a n s -  
fo rma t ions ,  the following r e s u l t  is obtained 

e~ - -  % 

eL ~ e~L~ 
- -  = 1 - -  3~1~ + 2~]e3 + B ~  (1 - -  ~le) 2 =f~ 01e), (12) 

emLm-- %L~ 

H e r e  the coeff ic ients  A 4 and B4, genera l ly  speaking,  a r e  unknown functions of the d is tance  to the nozzle c r o s s  
sect ion.  

I f  the p rof i l es  of e and e L  a r e  specif ied in the fo rm in Eqs.  (9) and (10), five unknowns m u s t  be  d e t e r -  
mined to  solve the p rob lem (assuming that  u m and 6 a r e  found f rom in tegra l  re la t ions  obtained on the b a s i s  
of the equat ion of mot ion [6])- A4, 6e, era,  ( e L ) m ,  and B4. These  unknowns may  be de te rmined  f rom the th ree  
in tegra l  r e la t ions  in Eq. (7) with k = 1, 2, 3 and two f rom Eq. (8) with k = 1, 2. 

The p a r a m e t e r  L,  which appea r s  in Eqs.  (7) and (8) not in the complex  eL but on its own, m a y  be d e -  
t e rmined  using eL  and e as  follows 

or  

L ~ e L / e  

L = e6L8 + (e=Lm-- esL~) f2 (~e) (13) 
e, + (e.. - -  e,) f i (n.) 

I f  the sca le  of  the ex te rna l  turbulence  is v e r y  l a rge ,  or  the deg ree  of turbulence of the ex te rna l  flux is 
sma l l ,  e 8 and L 6 m a y  be  r ega rded  a s  constant.  Then, as well  as  the equations for  u m and 5, i t  i s  sufficient  
to d e t e r m i n e  the je t  c h a r a c t e r i s t i c s  using only one d i f fe rent ia l  equation for  e m and the assumpt ion  that  the  
turbulence  sca le  is  p ropor t iona l  to the je t  width with r e s p e c t  to turbulent  pulsat ions 6e- The th ree  unknowns 
6e, era,  and A4 may  be  found f rom Eq. (7) for  k = 1, 2, 3, in which case  it  t akes  the s i m p l e r  fo rm 
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v~ (e - -  e ~ ) ~ - 2 y J d y - }  - 

0 0 

ae % 

f ,['au ) .. kCD6e ~ (e-e~)k-'e~/2yidy" (14) 
0 0 

When the integral-relation model is used, the constants Cg, ae,  CD, aeL,  CB, and C S of the Rodi-Spalding 
model may differ somewhat in numerical value from the results  of [3]. 

N O T A T I O N  

e and L, kinetic energy and turbulence scale; u, v, longitudinal and t ransverse  components of the mean 
velocity; u t, v v, w t, pulsational-velocity components; x, y, coordinates directed along the jet axis and perpen- 
dicular to it; 6, 5e, jet boundaries with respect  to velocity and turbulent pulsations, respectively; VT, turbu- 
lent viscosity; C~, ae,  CD, CB, Cs, and ~eL, empirical constants; p, liquid density; T, tangential s t ress .  In- 
dices." 5, jet boundary; m, jet  axis. 

1= 

2. 

3. 

4. 

5. 

6. 
7. 

8. 

L I T E R A T U R E  C I T E D  

A. N. Kolmogorov, "Turbulent-motion equation for incompress~le  liquid," Izv. Akad. Nauk SSSR, Ser. 
Fiz., 6~ No. 1-2 (1942). 
L. Prandtl, "iJber ein neues Formelsystem ffir die ausgebildete Turbulenz," Nachr. Akad. Wiss.,  G~t- 
tingen, Math.-Phys.,  6 (1945). 
W. Rodi and D. B. Spalding, "A two-parameter model of turbulence, and its application to free jets," 
Warme-  und Stoff~bertragung, 3~ 85 (1962). 
V. M. Nee and L. S. Kovasznay, 'Simple phenomenological theory of turbulent shear flows," Phys. Fluids, 

3 (1969). 
A. N. Sektmdov, "Application of differential equations for turbulent viscosity to the analysis of plane non- 
self-similar  flow," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5 (1971}. 
A. S. Ginevskii, Theory of Turbulent Jets and Wakes [in Russian], Mashinostroenie, Moscow (1969}. 
P. Baronti and G. Miller, "Integral solution of the turbulent energy equation," AIAA J, 12, No. 1, 108 
(1974). 
E. Naudascher, "On a general similarity analysis for turbulent jet and wake f lows"  IIHR Report 106, 
University of Iowa (1967). 

352 


